
 
 

The problem of defining essence 
—— including an introduction of Zalta’s abstract object theory 

 
 
 

This presentation undertakes to investigate the problem of defining essence. The 
prevailing definition was challenged by Kit Fine’s insightful counterexample. Zalta in 
his [2006] took an attempt to redefine this notion, based on his abstract object theory 
to solve Fine’s counterexample. We may first introduce Zalta’s abstract object theory, 
then articulate Fine’s challenge, and finally see Zalta’s solution. 

 
 

The basic thoughts of Zalta’s abstract object theory 
 
    1. The distinction between exemplify and encode 

The ordinary usage of ‘exemplify’ is predominant in indicating the relationship 
between objects and properties: If the object a has the property F, then we say, more 
formally expressed, that a exemplifies F. However, most philosophers don’t satisfy 
with this mere kind of notion. For firstly, the problem of whether two properties 
exemplified exactly the same object are identical is obscure. The notable example by 
Quine is that, if it is a coincidence that ‘the creature with heart’ and ‘the creature with 
kidney ’ are each exemplified and only exemplified by human, then does it follow that 
the above properties identical? Problem become more intricate if the discussions 
concerns abstract objects, which are sharply distinguished with ordinary objects. Of 
the former, we may raise the question whether an abstract object exist prior to the 
properties it exemplifies, or the contrary. Or, put it another way, does the object 
determines its properties or some properties determines an abstract object? Another 
problem concerns that how to deal with nonexistence and the figments. The most 
plausible way is to treat them as abstract objects. However, how can we say that an 
object exemplifies such and such properties, and at the same time asserting that they 
do not exist? And, while we may be content with the sentence, ‘Sherlock Holmes is a 
figure in Conan Doyle’s novels’, we may hesitate in truth of the sentence, ‘Holmes 
lived in London ’, which connects a fictional object with an actual property. 

Noticing that exemplification is just a way of predication, originated in the form 
of ‘a is F’, Zalta introduced another predication that would more suit the relationship 
between abstract objects and properties. Given any property or a set of properties, we 
would say these properties determine or encode an abstract object. We shall briefly 
mention the differences between these two kinds of predication. First of all, every 
property or every combination of properties would encode an unique abstract object. 
For example, ‘gold’ and ‘being mountain’ together determine an abstract object gold 
mountain; even ‘being round’ and ’being square’ would determine an abstract object 
the round square. An axiom of O, namely the A-objects axiom, will give a precise 
picture of this. Secondly, we would probably accept that exemplification is complete, 
i.e., an object a must exemplify F or its negation. However, this is not the case of 
encoding. Gold mountain would encode neither ‘being higher than the Mount Everest’ 
nor ‘not being higher than the Mount Everest’. Thirdly, exemplification is the only 
predication available for ordinary objects, while abstract objects can be predicated 
both by exemplification and encoding. Gold mountain would encode ‘being gold’ and 
‘being mountain’, and at the same time exemplifies the properties such as ‘not being 
located in anywhere of the world’ and ‘not being a mountain’. 



 
2. The distinction between existence and being concrete 
Intuitively, if we suspend the debate over the existence of abstract objects, both 

abstract and ordinary objects exist, while only ordinary ones are said to be concrete. 
As we will see later, the theory O has only one fixed domain of objects, regardless of 
the varying possible worlds. This differentiates it from the Kripke-model, which 
assigns each possible worlds a different domain of objects. (=) is a 
theorem of O, so every objects exists necessarily in every possible worlds. However, 
the same object would behave itself differently in different possible worlds, due to the 
properties it exemplifies is not the same. Only objects that exemplify ‘being concrete’ 
in some possible worlds would say to be ordinary. ‘Being concrete’ is characterized as 
a primitive 1-place relation, denoted as ‘!’, to designate concrete objects within a 
given possible world. Validating the Barean formula and its converse, 
, we can see more clearly that the world depicted by O are consisted 
of bare objects, ridded of any properties. It is the properties they exemplify at each 
possible world that determines their behavior. We may conclude, thereof, existence is 
not a predicate, which extension would vary from world to world, and we let 
‘concrete’ to take its role in O. This view is compatible with Kant’s claim that to exist 
is not a first-order predicate, and Quine’s that to be is to be within the range of the 
variables. 

 
3. The construction of O 
The language would be the second order modal language, plus descriptions and 

lambda-expressions to represent complex objects and relations. Atomic formulas and 
formulas that constructed out of them (called ‘propositional formulas’) are just the 
same as that of the classical ones, plus another kind of atomic formula of encoding: 
xF, in order to express this kind of predication. The logical axioms are just the 
combination of the axioms of propositional calculus, second order logic and S5, 
except some restrictions due to unaccepted results in the presence of descriptions. 
Then the proper axioms of O are asserted mainly to rule over ordinary and abstract 
objects. The model of O has only one fixed domain of objects, and there is no 
accessibility between possible worlds. In addition, the two kinds of predication are 
treated extensionally. More specifically, for every n-place relation, there is a 
exemplification extension which is a ordered n-tuple on the domain of objects; for 
1-place relations, there is an additionally encoding extension. Afterwards, the 
identical objects and relations will be defined. 

 
The Theory of Abstract Objects 
 
A. THE ALPHABET 
(1) Primitive object terms 

Names: 1, 2,… 
Variables: 1, 2,… 

(2) Primitive n-place relation terms: 
Names: P; ଵ

୬ , Pଶ
୬,…, ൌ, !       n0 

Variables: ܨଵ
୬, ܨଶ

୬,… 
(3) Connectives: , … 
(4) Quantifiers:  
(5) Lambda:  
(6) Iota:  
(7) Box:  
(8) Parentheses and brackets: (,), [,] 
 



B. FORMULAS AND TERMS 
(1) All primitive object terms are object terms; all primitive n-place relation terms are 
n-place relation terms. 
(2) If ଴ is any zero-place relation term, ଴ is a (propositional) formula. 
(3) Atomic exemplification: If ୬ is any n-place relation term, ଵ, ଶ,…, ୬ are 
object terms, then ୬ଵଶ,…୬ are (propositional) formula. 
(4) Atomic encoding: If ଵ is any 1-place relation term,  is object term, then ଵ is 
a formula. 
(5) If  and  are formulas,  is any object terms, then , , ,  are 
(propositional) formulas. 
(6) Object descriptions: If  is any formula with one free variable , then () is a 
object term. 
(7) Complex n-place relation terms: If  is any propositional formula, ଵ, ଶ,…, ୬ 
are any object variables which may or may not occur free in , then [ଵଶ…୬ ] 
is a n-place relation term. 
  
C. SEMANTICS 
(1) Interpretation: 
    =<, ଴, , , exl, , exl, >, where: 
     is the domain of POSSIBLE WORLDS.; ଴ is called the ACTUAL 
WORLD; 

 and  are the DOMAIN OF OBJECTS AND RELATIONS, respectively, 
where =୬଴୬; 

exl:୬(୬) (n1); exl:଴{T, F} (n=0); Then exl (r୬) is 
called the EXEMPLIFICATION EXTENSION of r୬ at . 

 contains eight logical functions, i, i, i,j, i,j, i, 
,  and , all of which are on the domain of relations and objects to 
form new relations, a correspondence of -expressions: 

(a) for each i1, i:nn-1 
for n1, exl (i(r

n,o))={<o1,…,oi-1,oi+1,…,on> : 
<o1,…,oi-1,o,oi+1,…,on>exl (rn)} 

for n=1, exl (i(r
1,o))=൜

T iff o݈݁ݔ ሺr1ሻ
,ܨ otherwise

 

(b) for each i1, i:nn-1 
for n1, exl (i(r

n))={<o1,…,oi-1,oi+1,…,on> : 
o(<o1,…,oi-1,o,oi+1,…,on>exl (rn))} 

for n=1, exl (i(r
1))=൜

T iff oሺo݈݁ݔ ሺr1ሻሻ
,ܨ otherwise

 

(c) for each i,j, 1ij, i,j:nn 
exl (i,j(r

n))={<o1,…,oi-1,oj,oi+1,…, oj-1,oi,oj+1,...,on> : 
<o1,…,oi,...,oj,…,on>exl (rn) } 

(d) for each i,j, 1ij, i,j:nn-1 
exl (i,j(r

n))={<o1,…,oi,…, oj-1,oj+1,...,on> : <o1,…,oi,...,oj,…,on>exl (rn) 
and oi=oj} 

(e) for each i1, i:nn+1 
for n1, exl (i(r

n))={<o1,…,oi-1,o.oi,oi+1,…,on> : 
<o1,…,oi,…,on>exl(rn)} 
for n=0, exl (i(r

0)={o : exl (r0)=T} 
(f) :nmn+m 

for n1, m1, exl ((rn, sm))={<o1,…,on,o1’,…,om’> : 
<o1,…,on,>exl (rn) or <o1’,…,om’>exl (sm) } 
for n=0, m1, exl ((r0, sm))={<o1,…,om> : exl (r0)=F or 



<o1,…,om>exl (sm) } 
for n1, m=0, exl ((rn, s0))={<o1,…,on> : <o1,…,on,>exl (rn) or 
exl (s0) =T} 

for n=0, m=0, exl ((r0, s0)=൜T iff ݈݁ݔ 
ሺrnሻ ൌ  ሺsmሻ݈ݔ݁ or ܨ ൌ T
,ܨ otherwise

 

(g) :nn 
for n1, exl ((rn))={<o1,…,on> : <o1,…,on>exl (rn)} 

for n=0, exl ((r0)=൜T iff ݈݁ݔ 
ሺr0ሻ ൌ ܨ

,ܨ otherwise
 

(h) :nn 
for n1, exl ((rn))={<o1,…,on> : ’(<o1,…,on>exl’(rn)} 

for n=0, exl ((r0)=൜
T iff ᇱሺ݈݁ݔԢ ሺr0ሻ ൌ Tሻ

,ܨ otherwise
 

 
exl:ଵ(); Then exl (rଵ) is called the ENCODING EXTENSION of rଵ. 

() for each object name ; (n)n for each relation name n. 
(2) ASSIGNMENTS 

Where  is any object variable, (); 
Where n is any relation terms: (n)n; 

(3) DENOTATIONS 
First of all, we shall note that given an arbitrary -expression, we may have 

more than one way to interpret it1. To get rid of this defect, we introduce the method 
of partitioning -expressions into eight equivalent classes, as follows: 

Let =[1...n ] be an arbitrary -expression 
(a) If there is 1in such that i does not occur free in  and i is the least such 

variable, then  is the i-th vacuous expansion of [1...i-1i+1...n ] 
(b) If it is not the case of (a), and if there is 1in such that i is not the i-th free 

object variable in  and i is the least such variable, then  is the i,j-th 
conversion of [1...i-1ji+1...j-1ij+1...n ], where j is the i-th free 
object variable in  

(c) If  is neither of the above, then if there is 1in such that i occurs more 
than once in  and i is the least such variable, then  is the i,j-th reflection of 
[1...i+kj...n ’], where k is the number of object variables between the 
first and second occurrences of i, ’ is the result of replacing the second 
occurrence of i with a new variable , and j=i+k+1. 

(d) If  is none of the above, then 
(i) If =, then  is the negation of [1...n ]; 
(ii) If =, 1,...,p and is the free object variables of , p+1,...,n is the free 
object variables of , then  is the conditionalization of [1...p ] and 
[p+1...n ]; 
(iii) If =,  is the i-th free object variable, then  is the i-th universalization 
of [1...i-1ii+1...n ] 
(iv) If =, then  is the necessitation of [1...n ] 
(e) If  is none of the above,  is the left most object term occurring in , then  

is the i -th plugging of [1...jj+1...n ’], where j is the number of object 
variables occurring before , ’ is the result of replacing the first occurrence 
of  with a new variable , and i=j+1 

(f) If  is none of the above, then  is atomic, 1,...,p is in order in which these 
variables first occur in , =[1...n 

n1...n] for some relation term n, 
                                                              
1For example, given an interpretation  and assignment , [ FG] can be interpreted in the following 
three way (supposing that (F)=R, (G)=S, ()=o): (i) 1,2((R, 1(S, o))); (ii) 
2(1,3((R, S)), o); (iii) 1,2(2((R, S), o)) 



and  is called elementary. 
 
Given the interpretation  and assignment , then the denotation  of term  

with respect to  and  is: 
(a) ()=(), where  is a primitive name; 
(b) ()=(), where  is a primitive variable; 
(c) where () is a object description, 

൫ሺሻ൯2=ቐ
o iff (')(''ሺሻ=o'satisfies  with respect to

 0('')('''''satisfies  with respect to 0''='))
undefined, otherwise

 

(d) where [ଵଶ…୬ ୬ଵଶ…୬] is the elementary -expression, 
([ଵଶ…୬ ୬ଵଶ…୬])=( ୬) 

(e) where  is the -th plugging of  by , ()=i((),()) 
(f) where  is the -th universaliation of , ()=i(()) 
(g) where  is the ,-th conversion of , ()=i,j(()) 
(h) where  is the ,-th reflection of , ()=i,j(()) 
(i) where  is the -th vacuous expansion of , ()=(()) 
(j) where  is the conditionalization of  by , ()=((),()) 
(k) where  is the negation of , ()=(()) 
(l) where  is the necessitation of , ()=(()) 

(4) SATISFACTION 
(a) If  is any primitive zero-place term,  satisfies  with respect to  iff 

exl(())=T; 
(b) If =୬ଵଶ,…୬,  satisfies  with respect to  iff 

(o1)…(on)(rn)( o1=( ଵ)…=( ଶ) rn =( ୬)< o1,…, on > exl(( rn)) 
(c) If =,  satisfies  with respect to  iff  

(o)(r1)(o=()r1=()oexl((r1)) 
(d) If =, or =, or =,  satisfies  with respect to  according 

to usual definition. 
(e) If =,  satisfies  with respect to  iff ’( satisfies  with respect to 

’) 
D. THE LOGIC 
(1) LOGICAL AXIOMS: 

Definition 1:  is ABSTRACT (A!): [ E!] 
Definition 2:  is ORDINARY (O!): E! 
Definition 3: F1=G1: (FG) 
Prepositional Schemata: 
LA1: () 
LA2: (())()() 
LA3: ()(()) 
Quantificational Schemata: 
LA43: (a) 

, where  contains no descriptions and is substitutable for  
     (b) (

 
 ), where  is atomic, and  both contains a 

description and is substitutable for , 

                                                              
2  Ii is a very important feature that we interpret our descriptions rigidly, that is , we pick out  through  only 
according to the actual world 0. 
3  The original axiom:’

, where  is substitutable for ’ is thus restricted to avoid undenoting 
descriptions. Consider the following inference: (i) (=) by the theorem of quantificational logic; (ii) 
()G=()G by (i) and the original LA4; (iii) (=()G) by (ii) and Existential Introduction. (iii) is clearly not 
valid. If G is the property of being the round square, nothing exists would exemplify this property. However, if 
such terms occur true in an atomic formula, we would have no such worries. Hence ,LA4b is conditioned by an 
atomic formula . 



LA5: ()() 
Modal Schemata 
LA6:                    (T) 
LA7: ()()     (K) 
LA8:                (5) 
LA9:             (Barean formula) 
LA10: F(FF) 

The last axiom of this schemata is important for abstract objects. It asserts that 
an object encodes the same properties in every possible worlds, and that it 
encodes necessarily. 
-Schemata 
-EQUIVALENCE (also -conversion) 
    where  is any propositional formula with no description, 
    1…n([1…n]1…n ୴ଵ,…୴୬

ଵ,…,୬) 
-IDENTITY 
    [1…n ୬1…n]= ୬  and [1…n ଴]= [ଵ

ᇱ …୬
ᇱ ଴], where 1…n  

and ଵ
ᇱ …୬

ᇱ  are distinct object variables. 
    Description Schemata4: 

L-DESCRIPTIONS1: 
    where  is atomic, 

ሺሻ(


) 
L-DESCRIPTIONS2: 
    where  is atomic, 

ሺሻ(


) 
L-DESCRIPTIONS3: 
    where  is atomic with 1 free and  with 2 free,  
    ଵ

ሺሻ((
ଶ

 )(
ଶ

 )) 
(2) RULES OF INFERENCE 

(a) MP: (b) Universal Introduction (‘UI’):  
(c) Necessitation Introduction (derived and restricted5) (‘I’): If we are given a 

proof of  from a set of formulas , then if the proof  does not depend on 
any unmodalized formulas of , then . 

(d) Second-order comprehension schema for relations (‘RELATION’): 
   Fn1…n(F

n1…n), where  is propositional and contains no 
free Fn ‘s and descriptions. 

(3) PROPER AXIOMS 
A1. (‘E-IDENTITY’): ൌ(!!F(FF)) 
A2. (‘NO-CODER’): !(FF) 
Hence ordinary objects do not encode any property. 
Definition 4 (for identity): =: ൌ(A! A! F(FF)) 
After this uniqueness can be defined. !():  
(()(()(ൌ(A! A! F(FF))))) 
A3. (‘IDENTITY’): =(,)(,), where (,) is the result of 

replacing some, but not necessarily all, free occurrences of  by  in 
(,),, provided it is substitutable. 

A4. (‘A-OBJECTS’): (A!F(F)), where  is not free in . 
It is an important axiom for abstract objects, which asserts that any condition 

expressed by  determines an unique abstract objects6. 

                                                              
4  Similarly, the axioms of this schemata are all conditioned by an atomic formula to avoid undenoting 
descriptions. 
5  Remember that our interpretation of description is rigid (see footnote 2), this restriction is to prevent the 
following derivation which is not true in all interpretations: (i) F()G(G) by L‐DESCRIPTIONS1; (ii) 
(F()G(G) by (i) and the unrestricted version of I; (iii) F()G((G)) by LA7 and (ii). (iii) 
asserts that if there is a unique object exemplifies G in 0 that exemplifies F necessarily, then there is an object 
exemplifies G necessarily. Clearly, it is not true in any interpretation. 
6  Suppose both  and  are abstract objects determined by , then  and  encode exactly the same properties; 



A5. (‘DESCRIPTIONS’): 
ሺሻ(!

(


)), where  is atomic 
with one free object variable  

 
Defining Essence 
 
1. The problem 

Essential properties has always been the center of metaphysics. Early 
philosophers conceived essential properties as that of being exemplified by an object 
whenever the object exists. After modal logic and the possible worlds semantic has 
developed, the notion can be represented in a more formalized manner. An property F 
is essential to an object x, is defined as x exemplifies F in every possible worlds 
whenever x exists, formalized as, ((=)F).. The definition has its virtue in 
elegance and intuitive However, the two counterexamples devised by Kit Fine in his 
[1994a] seems to imply that this definition of essence (abbreviated as ‘(E)’) is too 
simplistic. 

Take a look of his first counterexample. Consider two objects, Socrates (‘s’) and 
singleton Socrates (‘{s}’), one may prove, using (E) and the modal set theory, and 
assuming that the property of having Socrates as a member is essential to singleton 
Socrates, that the property of being a member of singleton Socrates is essential to 
Socrates, a consequences that we wish to avoid. More specifically, suppose [ s] 
is essential to {s}, then by (E), ((={s})[ s]{s}). By -conversion, 
((={s})s{s}). And by modal set theory, we may have 
((={s})(=s)), hence ((=s)s{s}). Again, by -conversion, 
((=s) [ {s}]s), finally we conclude that [ {s}] is essential to s by 
(E). 

The second counterexample is stronger in the sense that it give rise to similar 
results even without applying to modal set theory.. Consider two unconnected objects, 
say, Socrates (‘s’) and the Eiffel Tower (‘t’). For one thing, if being distinct from 
Eiffel Tower is essential to Socrates, then ((=s)[ t]s), then there is 
something that connects Socrates and Eiffel Tower, namely the necessary distinction. 
Hence being distinct from Eiffel Tower is not essential to Socrates. However, on the 
other hand, if we can show that  is a theorem of S5, then by the 
assumption that st, we get st and [ t]s. Finally, ((=s)[ 
t]s), which is contrary to the intuition above. The following is a proof of 
: 

1. =                   Assumption 
2. =                 I 
3. ==           1,2, DE 
4. (==)        3, I 
5. (==)(==)        Theorem 
6. ==       MP 
7. =                 Assumption 
8. =               6, MP 
9. ==       7,8 DE 
10. ==      5 
11. ==          T 
12. ==          9, 10, 11 
13. =        12, Contraposition 
14.  
Why cannot we accept that being a member of singleton Socrates is essential to 

Socrates? For one thing, epistemologically speaking, we mainly learn, perceive and 

                                                                                                                                                                                   
Then by LA10, they encode necessarily. Using the definition for identity, we can conclude that =. 



differentiate objects through their properties, among which the essential properties 
play an special role. Intuitively, essence is the form of the objects that cannot be 
deprived of. We might probably say that only when one acquire the essence of 
something, can he said to be fully master or understand the object. One may in his 
early age knows what a circle looks like and what is similar to circles, but he might 
not said to be understand what a circle is until he learned the definition of circles in 
geometry. Following this line, if being the member of singleton Socrates is really 
essential to Socrates, then one has to know that Socrates is a member of singleton 
Socrates to fully understand Socrates.. But singleton Socrates, under which lies a 
whole and complicated conventions and techniques of set theory, occurred a long time 
after Socrates’ birth and death. The consequence is that nobody can truly know who 
Socrates is until set theory is developed, of which we cannot accept.  This 
‘Socrates-counterexample’ can be extended to reveal further difficulties, as suggested 
by Fine, by replacing s{s} by any necessary mathematical truth. Then by the same 
token, it is necessary that this truth holds whenever Socrates exists, and this truth may 
become part of Socrates’ essence. But it is preposterous to conclude that one has to 
know all the truths in mathematics before he can fully understand Socrates. 

Fine’s second counterexample, though not assuming any modal set theory, has 
nevertheless invoked an ambiguous term ‘unconnected’. We may make up the 
definition in a coarse manner: s and t are unconnected if and only if F(FstFts); 
or (=s)((=s)(=t)). 

Fine thought of these difficulties of the notion of essence as it connects to modal 
notions and devised a logic of essence to solve the problem (Fine, [1995]). Zalta’s 
solution took another path. First of all, he assimilated the notion of essence into his 
logic of abstract object rather than devising a separate logic as Fine did. Secondly, he 
made distinct definitions for ordinary objects and abstract objects respectively. For the 
ordinary objects, he maintained the modal notions and replaced the ‘existence’ in (E) 
by a more fine-grained notion ‘concrete’; for abstract objects, he used the notion of 
encoding. This practice are claimed to be able to contain the above two 
counterexamples. Let’s see how. 

 
2. Defining the essence of ordinary objects 

This definition is very similar to (E), except that it replaces (=) by a 
primitive relation symbol ‘!’of O as follows: 

Essential(F,)=df (!F). 
So, ‘F is essential to ’ is defined as necessarily x amplifies F whenever  is 

concrete, rather than necessarily x exemplifies F whenever  exists. The distinction 
between ‘existence’ and ‘concrete’ is briefly mentioned before. O treats every objects 
as necessary existence, though every objects behave differently in different possible 
worlds due to their relationships with properties they exemplify or encode. ‘Concrete’ 
can be coarsely understood as ‘being spatiotemporal’ or ‘having mass and extension 
and being continuous in time’. The above definition can turn out to be more subtle if 
distinguished from the properties that  exemplifies at every possible worlds, e.g., the 
property of being self-identical. If F is the property of being self-identical, then 
obviously, F regardless of  concrete or not. So we may define ‘F is strong 
essential to ’ as follows: 

SEssential(F,)=df Essential(F,)F 
Since Fine’s second counterexample concerns ordinary objects only, we may first 

take a look at it. Assume that s and t are unconnected, then s is distinct from t, 
formalized in O as, st, one may show that st, hence [ t]s; also, 
(!s[ t]s) holds, so Essential([ t],s). Finally, we have 
SEssential([ t],s). In this way, the intuition that being distinct from the Eiffel 
Tower is not essential to Socrates remains. 



However, this solution is flawed. (1) we have just proved that being distinct from 
the Eiffel Tower is not Strong Essential to Socrates, but the weak essence remains. 
Even if we are content with this result, we can by the very same manner define (SE) 
on the basis of (E): 

(SE) F is strong essential to =df ((=)F)F 
And the conclusion would be very much the same. Then why should we adopt O 

to redefine the notion? (2) The definition depends on the ambiguous term ‘concrete’. 
Remember that ‘!’ is primitive in O, and that nothing in the semantics that give ! a 
special role, and the axioms that includes ! have not give us any sense exactly how 
does ! behaves. So it seems that the solution does not eradicate the problem, it just 
transfers the difficulties from defining ‘essence’ to defining ‘concrete’. (3) There is a 
more important defects. Let H be the conjunction of two properties F and G, where 
SEssential(F,) and G, then by the definition above, one may easily show that 
SEssential(H,). Instantiating the result, the conjunctive property of being human 
(which we may assume to be strongly essential to Socrates) and not being identical to 
the Eiffel Tower is also strongly essential to Socrates. The unintuitive result then 
recovers. 

 
3. Defining the essence of abstract objects 

The axiom A-objects 
(A!F(F)), where  is not free in  

tells us the existence of an abstract object corresponding to any condition on 
properties expressible in the language. Then by the definition for identity of objects: 

=: ൌ(A! A! F(FF)) 
one may easily show that the abstract object thus determined by  is unique. Again 
remember the satisfaction for encoding formulas: 

If =,  satisfies  with respect to  iff 
(o)(r1)(o=()r1=()oexl((r1)) 

where the encoding extension is world-free; and the axiom: 
F(FF) 

we can see that if an abstract object  encodes F at a possible world , then  
encodes F at every possible worlds. In other words, an abstract object  is uniquely 
determined by a property or the combination of properties, without varying from 
world to world. 

Thus , intuitively, the properties that an abstract object encode is exactly the ones 
that are essential to it. For. suppose F=F1…Fn, by A-objects, determines an 
abstract object . If there is some Fi that is not the essence for , then intuitively, there 
are cases (or possible worlds) in which there is  without having Fi. But it then 
violates the consequence that  encodes F at every possible worlds. Or, if there is 
another distinct property G such that G and G is essential for , then  thus 
determined by FG is identical to  determined by F alone, violating the A-objects. 
Only one question remains: would some properties exemplified by  be essential? We 
may introduce the concept of ‘concreteness-entailing’ to analyze this. A property F is 
concreteness entailing (CE(F)) if and only if (F!). That is , one an object 
exemplifies a concreteness-entailing object F, it follows that it will also amplifies the 
property of being concrete. ‘Being red’, ’being heavy’, ’being somebody’s sister’ are 
all concreteness-entailing properties. Here, we assert that all abstract objects 
exemplify the same properties, namely all properties other than the 
concreteness-entailing ones. Among these properties, there are intentional ones, e.g., 
‘being conceived of’, being thought of‘7. Having noted this, we can conclude that the 

                                                              
7  Though it is disputable that ‘the round square’ which is determined by ‘being round’ and ‘being square’ can be 
conceived of, here we assume that every abstract objects can be conceived of, guaranteed by A‐objects that 
asserts its existence. 



properties encoded by an abstract object are essential for them. So we thus define the 
essential properties for abstract objects: 

EssentialA (F,) =df F 
Now we can turn to analyze the first counterexample by Fine concerning 

Socrates and singleton Socrates. However, in O, the term ‘singleton Socrates’ is 
ambiguous until we supply a context. Another step should be adopted to import the 
theory of modal set theory (abbreviated as ‘M’) into the present theory O. We use the 
following two steps for importation: first we index every term of M, e.g.,  of M is 
indexed as M, then we may have the indexed formulas of O, e.g., MM; then we 
treat the theory M as an abstract object that encodes propositional properties of the 
form being such that  (‘[ ]’), where  is any indexed true sentence according to 
M. Therefore, a sentence  true according to theory M is defined as follows: 

MM=df M[ M], where M is the indexed formula 
We then introduce the following two principles: 

Theoretical Identification Principle: 
M=()(A!F(FMFM)), where M is any name occurring in M. 

This principle asserts that M is the abstract object that encodes exactly the properties 
exemplified M by according to M. 

Metatheoretic Importation Principle: 
If M, then OMM 

From the above definition and principles, we immediately get the following theorem: 
Equivalence Theorem: 
MFMFM  

Now we have the following theorems of O: 
OMMM  
OMM{M} 
OM[ M] 
OM[ {M}] 
Nevertheless, we shall not forget that what we have imported into O are a theory 

M together with all the sentences true according to M, hence ‘MM’ only is not 
the theorem of O. Then ‘singleton Socrates’ is indexed as ‘{s}M’; Socrates, being a 
ordinary object, can be just represented as ‘s’ without indexing. By Theoretical 
Identification Principle, {s}M =()(A!F(FMF{s}M)). 

By M, Ms{s}M, and by Metatheoretic Principle, OMs{s}M, then by 
Equivalence Theorem, O{s}M[ s]. Finally, using the definition of essence for 
abstract objects, we conclude that having Socrates as a member is essential for 
singleton Socrates. 

On the other hand, ‘s{s}M’ alone is not a theorem of O, so none of the 
following are theorems of O: 

O[ {s}M]s 
O(!s[ {s}M]s) 
OEssential([ {s}M],s)SEssential([ {s}M],s) 

Thus, the property of being a member of singleton Socrates is neither strong nor weak 
essential to Socrates. 
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